CVE-2025-68809
ksmbd: vfs: fix race on m_flags in vfs_cache
Description
In the Linux kernel, the following vulnerability has been resolved: ksmbd: vfs: fix race on m_flags in vfs_cache ksmbd maintains delete-on-close and pending-delete state in ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under inconsistent locking: some paths read and modify m_flags under ci->m_lock while others do so without taking the lock at all. Examples: - ksmbd_query_inode_status() and __ksmbd_inode_close() use ci->m_lock when checking or updating m_flags. - ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close() used to read and modify m_flags without ci->m_lock. This creates a potential data race on m_flags when multiple threads open, close and delete the same file concurrently. In the worst case delete-on-close and pending-delete bits can be lost or observed in an inconsistent state, leading to confusing delete semantics (files that stay on disk after delete-on-close, or files that disappear while still in use). Fix it by: - Making ksmbd_query_inode_status() look at m_flags under ci->m_lock after dropping inode_hash_lock. - Adding ci->m_lock protection to all helpers that read or modify m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()). - Keeping the existing ci->m_lock protection in __ksmbd_inode_close(), and moving the actual unlink/xattr removal outside the lock. This unifies the locking around m_flags and removes the data race while preserving the existing delete-on-close behaviour.
INFO
Published Date :
Jan. 13, 2026, 4:16 p.m.
Last Modified :
Jan. 13, 2026, 4:16 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Apply the latest Linux kernel updates.
- Ensure all file operations acquire the necessary locks.
- Verify that m_flags are consistently protected by locks.
- Test file delete and close operations after patching.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-68809.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-68809 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-68809
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-68809 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-68809 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jan. 13, 2026
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: ksmbd: vfs: fix race on m_flags in vfs_cache ksmbd maintains delete-on-close and pending-delete state in ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under inconsistent locking: some paths read and modify m_flags under ci->m_lock while others do so without taking the lock at all. Examples: - ksmbd_query_inode_status() and __ksmbd_inode_close() use ci->m_lock when checking or updating m_flags. - ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close() used to read and modify m_flags without ci->m_lock. This creates a potential data race on m_flags when multiple threads open, close and delete the same file concurrently. In the worst case delete-on-close and pending-delete bits can be lost or observed in an inconsistent state, leading to confusing delete semantics (files that stay on disk after delete-on-close, or files that disappear while still in use). Fix it by: - Making ksmbd_query_inode_status() look at m_flags under ci->m_lock after dropping inode_hash_lock. - Adding ci->m_lock protection to all helpers that read or modify m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()). - Keeping the existing ci->m_lock protection in __ksmbd_inode_close(), and moving the actual unlink/xattr removal outside the lock. This unifies the locking around m_flags and removes the data race while preserving the existing delete-on-close behaviour. Added Reference https://git.kernel.org/stable/c/5adad9727a815c26013b0d41cfee92ffa7d4037c Added Reference https://git.kernel.org/stable/c/991f8a79db99b14c48d20d2052c82d65b9186cad Added Reference https://git.kernel.org/stable/c/ccc78781041589ea383e61d5d7a1e9a31b210b93 Added Reference https://git.kernel.org/stable/c/ee63729760f5b61a66f345c54dc4c7514e62383d